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Introduction 

 

Recent public attitude research undertaken by the Project on Emerging Nanotechnologies 
indicated a desire on the part of the public for (A) more pre- and post-market testing/tracking 
of nanotechnology-based products and (B) a greater disclosure by firms producing these 
products of their possible environmental and human health impacts (Macoubrie, 2005).  What 
the public is asking is: “Are nanotechnologies safe?”    
 

In addressing this question, businesses concerned with the potential toxicology of nano-based 
products face two interrelated challenges regarding testing: speed and cost.  Given both 
domestic and global competition, firms are under pressure to develop and introduce new 
nanotechnology-based products into the marketplace rapidly or face potential losses in market 
share, revenues, and strategic position. This means that companies need toxicity screening 
methods that can fit into product development cycles, which will allow environmental and 
human health problems to be identified early and hopefully engineered out of products before 
they are introduced into the marketplace.  These screening techniques also have to be 
affordable.  Given the many small businesses and start-ups involved with nanotechnology, 
financial constraints will limit their options vis-à-vis toxicity testing.  Realizing this need, the 
Project on Emerging Nanotechnologies launched an initiative to work with firms and scientists to 
develop and apply fast-turnaround toxicity screening methods to emerging nanotech products. 
 
This proof-of-concept study involved the development and application of a genomic-based, 
ecotoxitity screening method to nano-scale iron particles being used for environmental 
remediation.  Ecotoxicity is an area that has received far less attention and funding than the 
study of the potential human health impacts of nanomaterials.   The screening was completed 
in less than four months with the complete cooperation of the company and the test showed no 
significant ecotoxicity effects for two important indicator species.  It is important to remember 
that the findings do not constitute a product endorsement but an additional set of data that the 
company and consumers can evaluate to make more informed decisions. 
 
David Rejeski 
Director, Project on Emerging Nanotechnologies 
Washington, DC 
December 2005 
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Executive Summary 
 

 

The increasingly rapid introduction of nano-based substances into the marketplace will require 
new methods to assess both short and long-term environmental impacts.  This project explores 
the application of genomics technologies to nanotechnology, to provide faster, cheaper, and 
more sophisticated ecotoxicity testing.  Microarrays – a relatively new technology capable of 
measuring subtle changes in DNA in response to exposure to toxins -- were used in conjunction 
with more traditional methods already approved by the EPA to assess ecotoxicity. 
 

The goal was to demonstrate the potential of this approach for ecotoxicity screening by 
collaborating directly with a company that had developed an engineered nanomaterial.  The 
company, Toda, manufactures Reactive Nano-Iron Particles (RNIP), which are currently being 
used to remediate toxic waste sites. 
 
The project combined both a standard EPA-approved ecotoxicology test using daphnia (a water 
flea) with assays using a newly developed, 2000-gene DNA array for the fathead minnow, an 
important indicator species that EPA uses for freshwater testing.  Three primary advantages 
emerged: 
 
 

• Speed: All testing was completed within 4 months.  This fast turnaround provides 
important advantages to businesses seeking to screen out potential environmental risks 
early in the product development cycle, before products enter the market.   

 
• Sensitivity:  The genetic based screens allow the examination of a variety of toxicity 

endpoints and sub-lethal effects that standard ecotoxicology testing often does often not 
address. 

 
• Cost:  This approach presently costs in the range of $20,000 – 40,000 and the costs can 

be expected to drop given the rapid cost decreases in DNA arrays. 
 
 
The testing of the Reative Nano-Iron Particles revealed no significant toxicity issues for the 
material, though the tests are not all-inclusive since only two species were studied, and only 
2000 genes are printed on the DNA array.  However, data of this type can serve to quickly 
highlight toxic materials and can serve as a basis for more detailed mechanistic studies.    
 
 
Importantly, the testing design described in this report can serve as a model for other 
companies that are currently developing nanotechnologies.  Having these types of rapid 
screening tests available allows for quick screening, data analysis, and data dissemination, 
which ultimately will build public trust and help ensure eco-safe nano-products. 
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I.  Background 
 

In August 2004, the Woodrow Wilson International Center for Scholars hosted a meeting in 

Washington, DC, to explore both the applications and implications of nanotechnology.   At that 

meeting questions were raised about the current state-of-the-science of the ecotoxicology of 

engineered nanoparticles.  Until that point, ‘eco-nano’ research had focused primarily on 

applications such as remediation and green manufacturing (see Appendix, Table 2), not on 

nanoparticles themselves as potential toxicants in the environment.  Although the US EPA 

initiated funding to study the possible environmental implications (versus applications) of 

nanotechnology in 2004  However, there is a lengthy process of writing grants, peer review, 

and approval of funding before research can begin.  It is evident that information on the impact 

of NP on the environment will lag years behind the commercialization and use of such particles 

for environmental applications.  

 

The Project on Emerging Nanotechnologies at the Wilson Center saw a need to fill this 

information gap and began an initiative to help validate new techniques for the rapid testing of 

nanoparticles to determine their effects on species that are good indicators of ecosystem 

health.  The ultimate goal is to establish simple, cost-effective methods that can be used to 

screen nano-based substances and products for eco-toxicity before they are commercialized 

and in the marketplace.  The establishment and validation of new techniques could also 

increase public trust in both government and industry and raise consumer confidence in 

emerging products. 

 

Existing techniques for testing compounds 

To measure the toxicity of a compound, short (acute) and longer (chronic) term exposures are 

run using one or more environmental "indicator species".    The standard ‘value’ that is used for 

comparing toxicity of chemicals is the 48-hour LC50, which is the amount of chemical needed to 

kill 50% of the animals in 48 hours (LC = Lethal Concentration).  Other parameters that are 

measured in these bioassays include measuring fertility, fecundity, and egg hatchability of 

animals and survival of young.  While these endpoints have high ecological value, they often 

lack information about the compound’s mechanism of action and are typically not sensitive 
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enough to measure low dose effects of a compound.  Finally, these biological endpoints are 

expensive to acquire.   

 

Use of microarray technology for testing nanoparticles 

Microarrays (also called gene chips) are tools that are made by spotting or synthesizing 

hundreds to thousands of genes specific to an organism onto a solid support matrix (Brown and 

Botstein, 1999; Brazma and Vilo, 2000; Burgess, 2001;  Churchill, 2002).  Microarrays detect 

changes in messenger RNA (mRNA) within an animal.   By measuring mRNA, one can detect 

subtle responses in an animal upon exposure to a compound.   Microarrays offer the advantage 

of being able to provide biologically relevant, mechanistically based data compared to existing 

assays that are currently used for compound screening.   Microarrays can also be used to detect 

adverse responses of animals to toxicants earlier than existing assays, which often measure 

various physiological endpoints.  This “early detection” is because changes in the normal 

physiology of an animal due to exposure to compounds in the environment are ultimately a 

result of initial changes at the molecular and cellular levels.   In addition, microarrays can be 

used to identify dose response relationships for compounds (Larkin et al., 2003) and therefore 

could be used to identify levels of exposure of animals in a laboratory or field setting. 

 

Animal models  

Fathead minnows (Pimephales promelas) were chosen as a model species in this study for 

several reasons.   First and most important, they have been used as a standard test species for 

aquatic toxicology since the 1960s (Mayer and Ellersieck 1986) and are widely used in eco-

toxicology.  There are over 9,000 records for fathead minnows in the ECOTOX database alone.   

Second, their reproductive physiology is well known (Jensen et al., 2001), and they can be 

propagated easily in the laboratory.  Third, there is a 2,000 gene microarray available for this 

species.  While there are larger, whole genome microarrays available in other aquatic species 

like zebrafish, for this project we wanted to use a sentinel species that is found in the United 

States and is commonly used as a standard species for eco-toxicology. 

 

Water fleas (Daphnia magna) were also used to examine the toxicity of RNIP.  Daphnia are 

small crustaceans that live in fresh water such as ponds and lakes. They are an important 

source of food for fish and other aquatic organisms. Like the fathead minnow, Daphnia are 
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commonly used as a bioindicator species by various governmental agencies, including the US 

EPA.  This species is also easily grown and maintained in a laboratory setting. 

 

Industry Partnership 

For the first phase of this project, we chose to work with a company that had already 

introduced a product into the market.  Several nanoparticle products are currently in use  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and commercially available.  These products had been approved for use by the US EPA and 

presented a baseline of ‘eco-nano-technologies’.  With input from US EPA, we requested the 

collaboration of one of the largest companies, Toda America, which is presently manufacturing 

Reactive Nano-Iron Particles (RNIP) for use in superfund site remediation (Appendix 1).  Toda 
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Figure 1:  Rapid gene expression screening using a fathead minnow microarray. 
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America donated 1 kg (250 g RNIP in 750 mL water, as a slurry) for toxicity testing using 

standard aquatic species.   

 

Compound used  

The reactive Nano Iron Particles (RNIP) that were used in this study are iron solids with an 

average particle size of 70 nanometers, composed of an iron oxide shell and an elemental iron 

core.  In comparison, a typical bacterial cell is approximately 1000 nanometers in diameter. One 

property that characterizes these particles from their micro-scale counterparts is a large reactive 

surface area of over 9,000 square feet per ounce (28.27 square meter per mL) of material. The 

ability of iron to rust, or oxidize, gives it the ability to treat hazardous substances and 

chemicals. The particles can be injected directly into groundwater or used to detoxify 

contaminated water in above-ground tanks.  The technology has been shown to be very 

effective in treating chlorinated organic solvents, organochlorine pesticides, and polychlorinated 

biphenyls (PCBs) (Zhang, 2003).  Though the use of iron for remediation has been generally 

accepted as an environmentally safe practice, applications so far have not made use of particles 

in the nanoscale range.  Two important questions raised are whether our understanding of iron 

at a bulk or micro scale translates to the nano-scale and whether the large increases in 

oxidative ability also poses additional threats to the environment.   

 

II. Overview of Project 

The goal of the project was to develop a quick turnaround genomic based ecotoxicity screen for 

companies developing and commercializing new nanotechnologies which provides results in 3-4 

months.  Based on these efforts, we hope to encourage industries that are developing 

nanotechnologies to test their materials using genomic tools. 

 

Study Design 

The project utilized both a standard EPA-approved ecotoxicology test using daphnia with assays 

using a newly developed, 2000-gene DNA microaarray for the fathead minnow, an important 

indicator species that EPA uses for freshwater testing   From the initial assays to the final 

report, the process took approximately 4 months (May-August 2005). 
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Step 1:  Range-finding assay using water fleas (Daphnia magna) 

Step 2:  Exposure studies using fathead minnows (Pimephales promelas) exposed to a high, but 

tolerable dose of RNIP for 5 days 

Step 3:  Gene expression study to examine changes in liver and gill of fish using DNA 

microarrays 

 

III.  Daphnia study 

Initial range find-studies were carried out with a common aquatic 

zooplankton, Daphnia magna, the water flea (picture at right).  Daphnia are 

the basis of many aquatic food chains since they filter-feed on phytoplankton 

(microscopic algae), and are in turn eaten by fish.  Daphnia are also used by 

the US EPA as a standard organism for testing the toxicity of various chemicals.  Therefore a 

large database is available to compare the toxicity of new chemicals to those that are already in 

use.   

The 48-hour LC50 of RNIP was found experimentally to be ~55 parts per million (ppm), which is 

approximately the same as that for bulk iron.  Figure 2 below shows mortality after exposures 

to various concentrations of RNIP. 
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Figure 2:  Daphnia mortality curve. 
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Based on a toxicity rating scale that is used by toxicologists to classify compounds for aquatic 

toxicity, RNIP would be considered slightly toxic (see Table 1).  In addition, 55 ppm of RNIP is 

an extremely high dose, and would likely not be seen in the watershed after remediation is 

completed. 

 

 
 
 
 
 
 
 
 
TABLE 1:  Toxicity scales as defined in: M. A. Kamrin, Pesticide Profiles: Toxicity, 
Environmental Impact, and Fate, Lewis Publishers (Boca Raton, FL, 1997), p. 8 
 
 

By comparison, chemicals such as benzo[a]pyrene have an LC50 of less than 0.1 ppm (Govers et 

al., 1984), and are considered to be very highly toxic. 

 

An interesting observation from the exposure study was that the Daphnia ingested RNIP and 

this NP also coated their carapace (outer shell), including filtering apparatus and appendages 

(Figure 3).  Even though the daphnids were coated with RNIP, they were able to survive and 

were able to feed and reproduce over a 21-day life-cycle test.  The significance of this 

observation is currently not known. 

 

 

 

 

 

 

 

 

 

A B C D

E F

Toxicity Category LC50 (ppm)
Very highly toxic <0.1

Highly toxic 0.1-1.0

Moderately toxic 1.0-10

Slightly toxic 10-100

Practically nontoxic >100  
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Figure 3: Daphnia exposed to various concentrations of RNIP used in remediation. A = control; B 
= 3 mg/L; C = 7.5 mg/L; D = 15 mg/L; E = 30 mg/L; F = 125 mg/L (dead daphnid). All daphnids 
shown are 21 days old and eggs are visible in their brood pouches (small green circles). Note the 
darkening of the digestive tract from A (normal greenish color) to D with increased ingestion of 
RNIP particles (solid arrows). Antennae become clogged with nano-iron in E and F (dashed 
arrows).  

 

 

 

 

 

IV. Fish study 

 

For the fish experiments, we exposed fathead minnows, a standard EPA test species, for 5-days 

to 50 ppm of RNIP.  In the absence of formal standards yet to be established by the EPA for 

using microarray data in exposure studies, we based our fish exposure design on the Daphnia 

range-finding studies and a report in the literature that examined gene expression profiles in 

the sheepshead minnow, which were exposed 4-5 days to a number of different compounds 

that mimic estrogens (Larkin et al., 2003).  The Daphnia range-finding study served as a cost-

effective, quick screen to identify a dose of RNIP that was subsequently used for the fish 

exposures.  Because of the longer exposure time in these studies, we used a slightly lower dose 

of RNIP than the dose used for the Daphnia studies. 

 

Fish were exposed as groups of 3 in 10 liter aquaria (Figure 4), with 5 aquaria serving as 

controls and 5 aquaria containing RNIP (30 fish total). A 50% water change was done at 24 and 

72 hours, and water quality and temperature were monitored and were at all times in normal 

ranges.   

 

 

 

 

 

 

 

 

Figure 4: Control (Left) and 50-ppm RNIP (Right) exposure aquaria, each containing three 

male adult fathead minnows.  Note that the tanks with RNIP had a dark color to the water.   
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Figure 4:  Picture of fathead minnow microarray. 

 

During the 5-day exposure the fish were 

monitored daily for overt physical changes 

(such as lesions).  The concentration used 

did not cause any mortality of the fish.   

Mortality is an endpoint that is currently 

used in acute toxicity tests.  In addition to  

measuring this traditional endpoint, we also 

measured gene expression patterns in the 

fish using a fathead minnow 2000 gene 

microarray that was developed by EcoArray  

 

and the US EPA and implemented on the Agilent® Technologies platform.   The genes on the 

fathead minnow microarray were obtained by sequencing clones obtained from cDNA and 

subtraction libraries that were constructed from different tissues (brain, liver, gonad, gill, and 

others) in male and female fathead minnows.  The 2,000 genes encode proteins that are part of 

a variety of diverse biological pathways in fathead minnows.  Because of the broad 

representation of genes on the microarray, these tools can be used to examine the toxicity of 

nanoparticles.   

 

To carry out the microarray experiments, preserved tissue samples were shipped to EcoArray 

for analysis.  Twenty microarrays were used to examine gene expression patterns in liver and 

gill tissue of fathead minnows exposed to RNIP or vehicle control.     

 

The microarray results revealed that very few genes were robustly changed in the RNIP 

exposed animals compared to controls.  Some genes were differentially regulated based on 

standard statistical measures (t-Tests, P<0.01). These included genes that encode proteins 

involved in tissue repair, inflammation (the first line of defense against any foreign chemical or 

organism), and anti-oxidant defenses.  See Appendix, Table 3 for a summary of some of the 

genes that were changed.   
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V.  Conclusions and Long-Term View 

 

The project demonstrated that a new technology can be brought to bear to the issue of 

screening NP quickly and cost-efficiently.  While there is additional work to be done to develop 

robust databases that can be used to further examine and document the microarray data, 

microarrays show substantial promise of being useful in screening NP products.  Working with a 

new technology in a new area, we came to meaningful conclusions in four months, and at a 

cost that would compare very favorably to current tests.  While these studies measured gene 

expression profiles in fathead minnows exposed to RNIP at a specific dose, additional exposures 

of fathead minnows to RNIP need to be conducted to identify Lowest-observed-effect (LOEL) 

and No observable effect (NOEL) levels.  Furthermore, additional studies that examine other 

endpoints like histology and reproduction could be conducted in the future as well as studies 

that characterize the gene expression profiles in Daphnia that are exposed to RNIP. 

 

The success of the project was also due to Toda Kyogo’s willingness to accommodate the 

project’s needs.   Without knowing what we would find in the aquatic toxicity tests, Biox 

cooperated fully with this study.  This type of openness and readiness to have their product 

tested shows not only a high level of faith in their product, but also their willingness to be 

transparent to the public.   

 

Microarray technology offers several advantages over existing testing methods and may replace 

them when it is fully developed and better understood by the testing community.   The current 

testing approaches are iterative, approximate and expensive.   For example, Donald Versteeg, 

Ph.D., a senior scientist at Procter & Gamble and advisor to EcoArray, estimates the current 

cost of screening a product  for possible endocrine effects are in the $50,000 to $80,000 range 

per compound using draft OECD or US EPA methods.  With advances in combinatorial chemistry 

and molecule design, new compounds are being synthesized rapidly and environmental 

screening costs need to be less than $5,000 per compound to make that new productivity 

worthwhile.  EcoArray estimates that arrays can deliver this kind of cost performance. 

 Environmental remediation assessments would realize similar benefits:  the current cost to test 

a site for toxicants is now $110,000 – 130,000.  A microarray-based approach will cost $30,000 

– 50,000 using 2006 array costs. 
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As has happened in other technologies (e.g. computer chips) the cost of gene microarrays is 

falling over time.    Figure 5 shows a projection of the base cost of microarrays for EcoArray’s 

fathead minnow array.  The chart shows cost per spot, excluding costs to hybridize, scan and 

analyze arrays.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For screening of NP, as well as other compounds, the rapidly falling cost per spot on the 

microarray is important since screens will likely use large microarrays in order to record the 

expression of as many different genes as possible during testing.   

 

The Future 

 

This study can serve as a model to other companies currently developing nanotechnologies.  

Having these types of rapid screening tests (3-4 months) available for companies allows for 

quick screening, data analysis, and data dissemination, and this ultimately will build public trust 

and ensure eco-safe nano-products. 
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Figure 5: Microarray costs. 
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APPENDIX 
 
Table 2:  Some recent funding by the US EPA to develop applications of 

nanoparticles for use in the Environment (US EPA, 2005).   

 

Type of NP 

used 
Potential use Lead PIs and Institutions 

 REMEDIATION  

nanoTiO2 photocatalysis of organic 
contaminants 

DD Dionysiou 
Miami University-Oxford, OH; University of 
Cincinnati, OH 

carbon 
nanostructures 

absorption of organics MB Tomson 
Rice University 

nano-metal 
oxides 

control NOx production S Senkan 
UCLA 

nano-iron degradation of PAH-based 
contaminants 

GV Lowry, SA Majetich, K Matyjaszewski, 
RD Tilton 
Carnegie Mellon University 

nano-
biopolymers 

control of heavy metals W Chen, M Matsumoto, A Mulchandani 
UC Riverside 

bi-metallic nano-
Fe/Pd 

remediation of inorganics and 
organics 

WX Zhang 
Lehigh University 

nano-crystalline 
zeolite 

NOx, photocatalytic oxidation of 
organics 

SC Larsen, VH Grassian 
University of Iowa 

nano-magnetite groundwater contamination M Hull 
Luna Innovations, Inc. 

 FILTRATION  

ferromagnetic 
particles 

using nanocomposites to 
monitor and filter (smart 
particles) 

WM Sigmund, D Mazyck, CY Wu 
University of Florida 

nano-crystalline 
catalysts 

disinfection by-product control 
in drinking water 

SJ Masten and MJ Baumann 
Michigan State University 

nanostructured 
electrodes 

perchlorate from drinking water SM Jaffe 
Material Methods LLC 

 SENSORS  

carbon nano-
particle based 
microchip 

analytical chemistry of 
Environmentally Relevant 
endpoints 

J Wang 
New Mexico State University 

nanocrystalline 
metallic 
conductors 

gas sensor V Subramanian 
UC Berkeley 

colloidal-metal 
nanoparticles 

monitoring Heavy Metals O Sadik, J Wang 
New Mexico State University 

polystyrene detection of aquatic toxins RE Gawley 
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beads coated 
with peptides 

University of Miami 

fullerene tracers for water pollution JB Callegary 
University of Arizona 

 GREEN ENERGY/ 
MANUFACTURING 

 

nano-clay substitute petroleum-based 
products for nano-composites 

LT Drzal, M Misra, AK Mohanty 
Michigan Sate University 

nano-micelles replacing VOCs with nano-
structured microemulsions 

DA Sabatini, JH Harwell 
University of Oklahoma 

nano-plastic 
fibrils and 
crystals 

alternative to Petroleum-based 
composites 

WT Winter 
SUNY College of Environmental Science and 
Forestry 

nano-TiO2 photocatalyst for solar cells G Chumanov 
Clemson University 

semi-conducting 
nanoparticles 

catalyst fuel cells NY Dolney 
University of Michigan-Ann Arbor 
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 Table 3:  Summary of some genes that are differentially regulated (P<0.01) in RNIP 

exposed animals compared to controls.   Many more genes were found to be differentially 
regulated in the liver compared to the gill.   
   
 

 

Gene Hit Definition 

Fold 

Change 

 

Explanation 

UNDER-EXPRESSED IN LIVER – MALES EXPOSED TO NANO-IRON 

Complement 
component C9 
precursor 

-1.3 

Plays a key role in innate and adaptive immunity 
(Boshra et al., 2006) 
 

OVER-EXPRESSED IN LIVER – MALES EXPOSED TO NANO-IRON 

Alpha-2 macroglobulin 
2  
Alpha-2 macroglobulin 
1  

2.0 

1.6 

Act as defense barriers – binding foreign (or 
host) peptides and particles.  (Borth, 1992) 

Selenoprotein Pa 
precursor 

1.8 

An extracelluar glycoprotein; associates with 
endothelial cells; postulated to protect against 
oxidative injury and to transport selenium from 
liver to peripheral tissues.  (Burk et al., 2003) 

Tubulin, alpha-3 1.6  

Involved in microtubulin dynamics (growth and 
shortening of tubules) and possibly motor 
proteins used for intracellular transport.  
Targeted by anticancer drugs.  (Pellegrini and 
Budman, 2005) 

Ubiquitin 1.5 
Plays a role in the process of protein 
degradation.  (Walters et al., 2004) 

Prothrombin precursor 1.5 

Thrombin (which has multiple roles) is 
generated from its inactive precursor 
prothrombin by factor Xa as part of the 
prothrombinase complex.  (Lane et al. epub 
ahead of print.) 

Antithrombin 1.4 
Mediates the activity of heparin, a major 
anticoagulant.  (Munoz and Linhard, 2004) 

Aldolase A fructose-
biphosphate 

1.3 
Plays a role in glucose metabolism (Shiokawa et 
al., 2002) 

Hexokinase 1.2 

Enzyme involved in glycolosis, transcriptional 
regulation and regulation of apoptosis. (Kim and 
Dang, 2005) 
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UNDER-EXPRESSED IN GILL – MALES EXPOSED TO NANOIRON   

Cytosolic alanine 
aminotransferase (c-
AAT) 

-1.2 
Plays a role in  glycolosis and energy production 
(Patel and Olson, 1985)   
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